A study of planar anchor groups for graphene-based single-molecule electronics.
نویسندگان
چکیده
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
منابع مشابه
Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes
We have studied the charge and thermal transport properties of a porphyrin-based single-molecule transistor with electro-burnt graphene electrodes (EBG) using the nonequilibrium Green's function method and density functional theory. The porphyrin-based molecule is bound to the EBG electrodes by planar aromatic anchor groups. Due to the efficient π-π overlap between the anchor groups and graphen...
متن کاملBifunctional anchors connecting carbon nanotubes to metal electrodes for improved nanoelectronics.
Since their discovery in 1991, carbon nanotubes have attracted much attention due to their unique electric, mechanical, and chemical properties.1-5 Numerous breakthroughs have led to practical fabrication of carbon nanotube electronics devices, such as transistors,6 interconnects,7 spintronics,8 and sensors. In addition, exfoliated or single graphene sheets show promise as an alternative materi...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملA Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment
In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...
متن کاملTunable Wideband Graphene based Filters in THz Band
In this paper, a procedure for analyzing and designing of tunable wideband band-pass and band-stop graphene based filters in the terahertz band is proposed. These planar wideband plasmonic filters are unique in their kind. With this procedure, it is possible to design filters with the desired functional characteristics in the form of the similar quarter-wavelength resonance stubs. The discontin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 140 5 شماره
صفحات -
تاریخ انتشار 2014